«Квантик» - журнал для любознательных

Приглашаем всех попробовать свои силы в нашем очередном конкурсе 2018/2019 учебного года!

Задачи конкурса печатаются в каждом номере. Участвовать можно, начиная с любого тура. Победителей ждут дипломы журнала «Квантик», научно-популярные книги, диски с увлекательными математическими мультфильмами.

Конкурс ориентирован на школьников 5-8 классов, но и младшеклассники могут присылать решения. Вносите решения задач II тура, с которыми справитесь, не позднее 1 ноября в систему проверки konkurs.kvantik.com (инструкция v.ht/matkonkurs) или высылайте по электронной почте либо обычной почтой по адресу: 119002, Москва, Б. Власьевский пер., д. 11, журнал «Квантик». В письме кроме имени и фамилии укажите город, школу и класс, в котором вы учитесь, а также обратный адрес.

Конкурс 2017/2018 учебного года окончен. Скоро будут допроверены оставшиеся работы и объявлены результаты. Следите за новостями! Задачи и результаты конкурсов прошлых лет: 2017-2018, 2016-2017, 2016, 2015, 2014, 2013, 2012.

Желаем успеха!

II тур

Задача 6. (Сергей Дворянинов)

Найдите наименьшее такое натуральное число, что и в его записи, и в записи удвоенного числа встречаются все десять цифр от 0 до 9.

Иллюстрация

Задача 7. (Александр Грибалко)

В наборе присутствуют по одному разу всевозможные фигурки из одной, двух, трёх и четырёх клеток (см. рисунок).
а) Выложите их «по клеточкам» на доску 8×8 так, чтобы никакие две фигурки не перекрывались и не касались даже углами (фигурки разрешается переворачивать).
б) Можно ли это сделать, если дополнительно требуется, чтобы на доске поместилась ещё одна одноклеточная фигурка, не имеющая общих точек с уже выложенными?

Чертёж
Иллюстрация

Задача 8. (Евгений Смирнов)

На планете Шелезяка в году 12 месяцев, во всех месяцах поровну дней. Её юному жителю Плексу меньше 100 лет. Возраст Плекса в годах представляется несократимой дробью, в числителе и знаменателе которой – квадраты целых чисел. А его возраст в месяцах – куб целого числа. Сколько Плексу лет и месяцев?

Иллюстрация

Задача 9. (Игорь Акулич)

На шахматной доске 8×8 расставили 7 слонов так, чтобы никакие два не били друг друга. Обязательно ли после этого удастся переставить каждого слона на другое поле ходом коня так, чтобы в новой расстановке никакие два слона по-прежнему не били друг друга?

Иллюстрация

Задача 10. (Егор Бакаев и Павел Живцов)

а) В зале музея стоят по кругу 5 одинаковых шкатулок. Каждый вечер начальник охраны запирает две шкатулки по своему выбору, положив в одну из них бесценный алмаз. Подкупленный работник музея видит действия начальника и хочет оставить взломщику подсказку, где алмаз. Для этого он открывает крышки ровно у двух незапертых шкатулок, а остальные не трогает. Как ему заранее договориться со взломщиком, чтобы тот, придя ночью в музей и увидев, у каких двух шкатулок открыты крышки, сразу понял, где лежит алмаз?
б) Та же задача, но в зале стоят по кругу 33 шкатулки, начальник запирает 16 шкатулок, положив в одну алмаз; взломщик должен понять, где алмаз, по двум шкатулкам, у которых открыты крышки.

Иллюстрация

I тур

Задача 1. (Соня Голованова и Юрий Маркелов)

В клетчатом квадрате 6×6 можно зачеркнуть 9 клеток так, чтобы не было 5 незачёркнутых клеточек подряд ни по горизонтали, ни по вертикали (см. рисунок). А можно ли зачеркнуть всего
а) 8 клеток;
б) 7 клеток;
в) 6 клеток
так, чтобы выполнялось то же условие?

Иллюстрация

Задача 2. (Евгений Братцев)

У входа в парк развлечений висит электронное табло, показывающее время (часы и минуты). Когда табло показало 9:00, в парке открылись шесть аттракционов и работали до вечера по 1, 2, 3, 4, 5 и 6 минут соответственно с минутным перерывом. Когда Олег пришёл днём в парк, ни один аттракцион не работал. Какое время показывало электронное табло в этот момент?

Иллюстрация

Задача 3.

Квантик написал 100 различных натуральных чисел, а Ноутик написал число, делящееся на каждое из них. Докажите, что число Ноутика хотя бы в 100 раз больше самого маленького числа у Квантика.

Иллюстрация

Задача 4. (Сергей Костин)

Разрежьте квадрат 5×5, в центре которого вырезано отверстие 1×1, на три фигуры с равными периметрами и равными площадями.

Чертёж
Иллюстрация

Задача 5. (Игорь Акулич)

а) Квантик и Ноутик показывают такой фокус. Зритель задумывает любые шесть разных целых чисел от 1 до 125 и сообщает их только Ноутику. После этого Ноутик называет Квантику какие-то пять из них, и Квантик угадывает шестое задуманное зрителем число. Предложите способ, как могли бы действовать Квантик и Ноутик, чтобы фокус всегда удавался.
б) Сумеют ли фокусники добиться успеха, если зритель сам указывает Ноутику, какие пять из шести задуманных им чисел Ноутик должен назвать Квантику?

Иллюстрация