«Квантик» - журнал для любознательных
English version

Все выпуски по годам: 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025, ...

В этом номере:

  • Измеряем углы и проверяем угольники
  • Разбираемся в иероглифах на китайских монетах
  • Выращиваем ёлочку из квадрата
  • Заставляем нейроны светиться
  • Все ли прямоугольники вы найдёте?
  • Склеиваем сфериконы и катаем их по плоскости
  • Доказываем теорему Наполеона наглядным замощением
  • Попробуйте сложить самую симметричную ёлочку
  • Избранные задачи Турнира городов
  • Итоги нашего конкурса. Поздравляем победителей!
  • Загадка отражений в мыльном пузыре

В этом номере:

  • Откуда лифт приезжает чаще — сверху или снизу?
  • Сравниваем древнеиндийские монеты
  • Как измерить яркость звёзд?
  • Многоугольники-параллельники и квадраты на их сторонах
  • Бывают ли на реках перекрёстки?
  • Разбираем ростки Конвея. При чём здесь многогранники?
  • Решаем ребус в римских цифрах. Точно ли вы их знаете?
  • Вращаем трубочку-водолаза
  • Складываем квадраты из слов
  • Задачки с подвохом на движение
  • Геометрия на гвоздях и нитках

В этом номере:

  • «Разбираем» транспортные детали
  • Сколько золота в древнегреческой монете из электра?
  • Учимся геометрии по клеточкам
  • Как идти прямо на цилиндре и на конусе? (Окончание.)
  • Пять сторон света, или как не заблудиться в индонезийской деревне
  • Месяц, портрет или гелий — в какой истории нелепость?
  • Четыре задачи из жизни барона Мюнхгаузена
  • Паркеты Робинсона: есть только непериодическая укладка!
  • Четыре задачи о воздушных пузырьках
  • Новый тур конкурса по русскому языку
  • Играем в ростки Джона Конвея

В этом номере:

  • Гийом Лежантиль: десятилетняя погоня за затмением
  • Как идти прямо на цилиндре и на конусе? Продолжение.
  • Когда пупырышки контрастнее в зеркале?
  • Как Бусенька во сне на семь делила
  • Неочевидные транспортные детали
  • Не забудет ли Саша принимать таблетки от забывчивости?
  • Ребус про курс доллара
  • Лингвистические задачи из новой книги
  • Как сделать ананас из кусочков яблока?
  • Ищем форму бумажной подложки для кексов

В этом номере:

  • Как идти прямо по кривой поверхности?
  • Разгадываем Бусеньку: соединяем домики и колодцы на обычной кружке
  • Чуковский, Чайковский или Бэкон? Какая история придумана?
  • Геометрические задачи, составленные из квадратов
  • Неожиданная физика варенья
  • Как Бусенька соединяла домики и колодцы
  • Разгадайте шифр по нескольким сообщениям
  • Какие космические скорости бывают, и как их определить
  • Разрезаем равносторонний треугольник на 5, 10 и 15 равных частей.
  • Справляемся пылесосом с коротким шнуром в большой комнате

В этом номере:

  • Чем наш зрачок похож на волшебное зеркало
  • Что не так в этих задачах про периметр
  • Какое число — следующее после единицы?
  • На сколько подобных ему частей можно разрезать треугольник?
  • Три истории про художников: найдите придуманную
  • Как популяризовать математику: о книге «Числа и фигуры» и её авторах
  • Избранные задачи LXXXVI Санкт-Петербургской олимпиады
  • Новый тур конкурса по русскому языку
  • Может ли металлический бак стать прозрачным?

В этом номере:

  • Самоповторяющееся слово Трибоначчи и фрактал Рози
  • От почтового конверта к обходу мостов: эйлеровость и кэрролловость
  • Четыре оптические задачи из «Нового физического фейерверка»
  • «Кручёные» слова
  • Четыре задачи на пространственное воображение
  • Бусенька и парадоксы измерения площади
  • Три истории про животных: найдите вымышленную
  • Избранные задачи конкурса «Кенгуру-2019»
  • Разбейте симметричную фигуру на одинаковые полимино и соберите другую симметричную фигуру
  • Ловим преступника, соблюдая правила дорожного движения

В этом номере:

  • Самоповторяющееся слово Фибоначчи и непериодические мозаики
  • Спасаем водолаза и медузу, вспоминая задачу Эйнштейна о чаинках
  • Как превратить верблюда в квадрат?
  • Новое прочтение автобиографичных чисел
  • Измеряем плотность, когда это непросто
  • Рогалики, козинаки и баранки — какое название произошло от животных?
  • Как связаны слова «метро», «митрополит», «перламутр» и «материя»?
  • Три головоломки из гексамино
  • Как неправильно определить скорость стрелок часов и что из этого получится
  • Избранные задачи Московской математической олимпиады
  • Весенний тур XLI Турнира городов
  • Почему эти два дорожных знака повёрнуты остриём вниз?

В этом номере:

  • Блинная, котлетная и апельсинная теоремы
  • Собираем многогранник из семиугольников!
  • Ву Цзяньсюн — королева ядерных исследований
  • Деревья: решаем задачи о них или с их помощью
  • Почему самолёт летает?
  • Головоломка о «лишней» детали: неужели влезет?
  • Журналу «Квант» — 50 лет!
  • Избранные задачи XXXI Математического праздника
  • Новый тур конкурса по русскому языку
  • Что такое средняя средняя скорость?

В этом номере:

  • Вкусные буквы и цветные ароматы
  • Невозможный угольник и фонарщики на плоскости
  • Парадокс о времени службы последней ручки
  • Чем альпинистская верёвка отличается от чайного пакетика и пуговицы-жужжалки?
  • Складываем кубик и другие фигуры из восьми элементов
  • Джозеф Пристли – английский химик, физик, лингвист, педагог, политолог, философ и богослов
  • Избранные задачи I тура LXXXVI Санкт-петербургской олимпиады по математике
  • Почему палочка-магнит и шарик то притягиваются, то отталкиваются?
  • Такая современная древнерусская табличка

В этом номере:

  • Перекашиваем квадраты и обобщаем теорему Пифагора
  • Шахматный король бродит по латинскому квадрату
  • Как медведи, козы и львы породнились с другими животными
  • Окончание истории о великом химике: Лайнус Полинг — борец за мир
  • Какой из трёх исторических анекдотов - выдумка?
  • Вода, чайники и немного физики
  • Бусенька и делимость в тысячезначной системе счисления
  • Задачи XLI Турнира имени М.В.Ломоносова
  • Задача о запутавшемся воздушном змее

В этом номере:

  • Находим бесконечные суммы с помощью картинок
  • Самоопорожняющаяся чаша Тантала
  • Как заполнить квадрат с помощью z-тетрамино?
  • Великий химик Лайнус Полинг, его теории о связях атомов в молекулах и о сворачивании белков
  • Как сделать равенство на магнитной доске верным?
  • Наивная физика в четырёх задачах
  • Когда работает ещё один признак равенства треугольников?
  • Считаем перпендикулярные биссектрисы в многоугольнике с прямыми углами
  • Осенний тур Турнира городов
  • Начинается новый конкурс по русскому языку
  • Как внести стол в дверь в небольшой квартире?